Telegram Group & Telegram Channel
🐍 Задача с подвохом: Декораторы и изменяемые объекты

Условие:

Что выведет следующий код и почему?

def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)

Вопрос:
Что именно выведется? В чём здесь двойная ловушка?

🔍 Анализ:

Сначала кажется, что:

1. add_to_list(1) вернёт [1].
2. add_to_list(2) вернёт [2].
3. add_to_list(1) либо вызовет функцию снова, либо вернёт результат из кэша.

Но есть два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize сохраняет результат в кэше по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если результат берётся из кэша, вы получите ссылку на тот же список, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`.
- `res2 = add_to_list(2)` → функция вызвана снова с другим аргументом, список теперь `[1, 2]`.
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")`, и вернётся ссылка на тот же изменённый список.

🔢 Итог:

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все переменные указывают на один и тот же изменённый список.

💥 Почему это важно:

1️⃣ Изменяемые аргументы по умолчанию сохраняются между вызовами функции.
2️⃣ Кэширование изменяемых объектов может привести к неожиданным результатам: возвращается не неизменяемый результат, а ссылка на объект, который может изменяться позже.

🛡️ Как исправить:

1️⃣ Использовать `lst=None` и создавать новый список внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать изменяемые объекты, лучше возвращать их копии:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

Итог:

Декораторы вместе с изменяемыми аргументами — это ловушка даже для опытных программистов. Особенно, если изменяемые объекты кэшируются и потом меняются за кулисами.

@Python_Community_ru



tg-me.com/Python_Community_ru/2597
Create:
Last Update:

🐍 Задача с подвохом: Декораторы и изменяемые объекты

Условие:

Что выведет следующий код и почему?

def memoize(fn):
cache = {}
def wrapper(arg):
if arg in cache:
print("Из кэша")
return cache[arg]
else:
result = fn(arg)
cache[arg] = result
return result
return wrapper

@memoize
def add_to_list(val, lst=[]):
lst.append(val)
return lst

res1 = add_to_list(1)
res2 = add_to_list(2)
res3 = add_to_list(1)

print(res1)
print(res2)
print(res3)

Вопрос:
Что именно выведется? В чём здесь двойная ловушка?

🔍 Анализ:

Сначала кажется, что:

1. add_to_list(1) вернёт [1].
2. add_to_list(2) вернёт [2].
3. add_to_list(1) либо вызовет функцию снова, либо вернёт результат из кэша.

Но есть два подвоха:

Подвох №1: изменяемый аргумент по умолчанию

Аргумент lst=[] создаётся один раз при определении функции. Все вызовы без передачи списка будут использовать один и тот же список.

Подвох №2: кэширование по ключу

Декоратор memoize сохраняет результат в кэше по ключу arg. Но функция возвращает список, который изменяется при каждом вызове. Даже если результат берётся из кэша, вы получите ссылку на тот же список, который менялся между вызовами!

🧮 Что реально произойдёт:

- `res1 = add_to_list(1)` → функция вызвана, список становится `[1]`.
- `res2 = add_to_list(2)` → функция вызвана снова с другим аргументом, список теперь `[1, 2]`.
- `res3 = add_to_list(1)` → аргумент `1` есть в кэше, сработает ветка `print("Из кэша")`, и вернётся ссылка на тот же изменённый список.

🔢 Итог:

```
[1, 2]
[1, 2]
Из кэша
[1, 2]
```

Все переменные указывают на один и тот же изменённый список.

💥 Почему это важно:

1️⃣ Изменяемые аргументы по умолчанию сохраняются между вызовами функции.
2️⃣ Кэширование изменяемых объектов может привести к неожиданным результатам: возвращается не неизменяемый результат, а ссылка на объект, который может изменяться позже.

🛡️ Как исправить:

1️⃣ Использовать `lst=None` и создавать новый список внутри функции:
```python
def add_to_list(val, lst=None):
if lst is None:
lst = []
lst.append(val)
return lst
```

2️⃣ Если кэшировать изменяемые объекты, лучше возвращать их копии:
```python
import copy
cache[arg] = copy.deepcopy(result)
```

Итог:

Декораторы вместе с изменяемыми аргументами — это ловушка даже для опытных программистов. Особенно, если изменяемые объекты кэшируются и потом меняются за кулисами.

@Python_Community_ru

BY Python Community


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Python_Community_ru/2597

View MORE
Open in Telegram


Python Community Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Python Community from tr


Telegram Python Community
FROM USA